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Targeting Vasculature in Urologic Tumors:
Mechanistic and Therapeutic Significance
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Abstract Recent advances toward understanding the molecular mechanisms regulating cancer initiation and
progression provide new insights into the therapeutic value of targeting tumor vascularity by interfering with angiogenic
signaling pathways. The functional contribution of key angiogenic factors toward increased vascularity characterizing
metastatic tumors and their therapeutic exploitation is considered in three major urologic malignancies, renal, bladder,
and prostate cancer. With the realization that the success of the therapeutic efficacy of the various anti-angiogenic
approaches for the treatment of urologic tumors has yet to be proven clinically, the challenge remains to select critical
angiogenesis pathways that can be targeted for an individual tumor. Here we discuss the major mechanisms that support
formation of vasculature in renal, bladder, and prostate tumors and the current results of targeting of specific molecules/
regulators for therapeutic intervention against metastastic disease. J. Cell. Biochem. 103: 691–708, 2008.
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In 2007, there will be an estimated 346,440
new cases diagnosed with urologic cancer in the
United States and 54,360 Americans will die
from a urologic malignancy (SEER Cancer
Statistics Review, http://cancernet.nci.nih.gov/
statistics). This mortality rate is alarmingly

high as it translates to one individual dying
every 9 min in the US due to a urologic tumor
and thus a significant health issue.

Angiogenesis is an essential process in
normal physiological functions such as
ovarian cycle in female reproductive system
[Kaczmarek et al., 2005] and a contributing
factor in disease states such as chronic inflam-
mation, arthritis, cancer, andmaculardegenera-
tion [Folkman, 1995]. During the development
of the embryo, mesoderm differentiates into
angioblasts; these endothelial cells, not yet
organized into a lumen, form primitive vessels
toward development of blood vessel network,
via vasculogenesis. In the adult, new blood
vessels form from pre-existing vasculature, via
angiogenesis [Risau, 1997], while malignant
conditions induce a hypercoagulable state in
their hosts [Nash et al., 2001]. By early 1960s it
was evident that tumors could elaborate diffu-
sible substances that induce angiogenesis
from the host vasculature [Algira et al., 1945;
Greenblatt and Shubick, 1968]. The increased
tumor vascularity was originally believed to be
vasodilation of the host endothelium in
response to metabolic waste products from
within the tumor [Folkman, 1995]. A decade
later Dr. Folkman’s pioneering work identified
angiogenesis as a required phenomenon for
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tumor growth and metastasis, first defining the
potential therapeutic value of agents targeting
this process [Folkman, 1995; Folkman, 1971].
Tumor blood vessels exhibit characteristic
markers which are not present in normal
angiogenic tissues [Ruoslahti, 2002]. After
enduring the circulation ‘‘journey,’’ metastatic
cancer cells can escape out of the endothelial
vasculature and in the target tissue via
extravasation. How do the metastastic cells
signal activating changes in the vascular per-
meability of blood vessels in target organs?
Vascular endothelial growth factor (VEGF)
initially identified as potent vascular perme-
ability factor is the lead candidate. Activation
of Src family kinases in endothelial cells
exposed to VEGF induces disruptions in endo-
thelial cell junctions, facilitating metastatic
extravasation. Hypoxia within the tumor mass
applies selective pressure promoting the out-
growth of malignant cells, with diminished
apoptotic ability. The cellular response to
low oxygen tension involves stabilization of
a hypoxia-inducible factor-1 (HIF-1) transcrip-
tional complex genes involved in cell survival
and invasion.

In this review we discuss the current knowl-
edge on angiogenesis as a contributor to cancer
progression, and the clinical exploitation of this
knowledge towards molecular targeting of
tumor vascularity for the treatment of urologic
malignancies.

REGULATION OF ANGIOGENESIS
IN TUMOR PROGRESSION

Angiogenic stimuli produced due tometabolic
demands of host tissues initiate the angiogenic
response [Risau, 1997]. Upon binding to mem-
brane receptors in vascular endothelial cells, a
five-step process is triggered: initially the
vascular endothelial basement membrane of
the parent vessel breaks down, allowing a route
for the development of a new capillary sprout,
this is followed by migration of endothelial cells
through the basement membrane toward the
angiogenic stimulus; this leading front of
migrating cells is driven by enhanced prolifer-
ation of endothelial cells, followed by formation
of capillary tubes via organization of the endo-
thelial cells, and a recruitment of periendothe-
lial cells (pericytes) and vascular smoothmuscle
cells for new capillary stabilization [Cotran
et al., 1999; Van Moorselaar and Voest, 2002].

In normal conditions angiogenesis is main-
tained by an intricate balance between
endogenous stimulators of angiogenesis and
endogenous inhibitors of angiogenesis
(Table I). Additionalmechanisms include inhib-
ition of angiogenesis via sequestration of stim-
ulators of angiogenesis in the extracellular
matrix (ECM) and changes in the endothelial
cell shape, reducing their susceptibility to
stimulators [Folkman, 1995]. During tumori-
genesis, the angiogenic switch is activated
directly via induction of angiogenic growth
factors, or indirectly, by recruiting host
immune cells that release mediators of angio-
genesis [Folkman, 1993]. Circulating endothe-
lial precursor cells (CEP) from the bonemarrow
also contribute to tumor neovascalurization
[Lyden et al., 2001], while tumor cells can
recruit new blood vessels due to a network
from adjacent endothelial cells [Dameron et al.,
1994].

The Major Players: Endogenous
Angiogenesis Promoters

Vascular endothelial growth factor.
VEGF is the most prominent regulator of
physiological angiogenesis [Lonser et al., 2003].
Genetic knockout studies revealed that loss of
a single VEGF allele results in embryonic
lethality [Ferrara et al., 1996], pointing to
a dose-dependent requirement of VEGF for
normal vasculature during development [Van
Moorselaar and Voest, 2002]. VEGF-A is
the protagonist member of the VEGF family
that includes VEGF-B, VEGF-C, VEGF-D, and
placenta growth factor [Ferrara et al., 2003]. It
is a secreted heparin binding protein of four
isoforms produced by alternative exon splicing
[Orlandi et al., 1996; Jackson et al., 1997] and
can be induced by other signaling effectors such
as TGF-b, TGF-a, and PDGF [Lara et al., 2004].
VEGF functions are mediated through two
tyrosine-kinase receptors, VEGF-R1 (Flt-1)
[deVries et al., 1992] and VEGF-R2 (Flk-1 or
KDR) [Millauer et al., 1993], in vascular
endothelial cells [Hanahan, 1997]. VEGF ini-
tially interacts with VEGF-R2 to promote
endothelial cell proliferation, migration and
vascular permeability, and subsequently with
VEGF-R1 to assist the organization of new
capillary tubes. Loss of VEGF-R1 impairs the
ability of angioblasts to be organized into
mature capillaries in vivo [Fong et al., 1995]
and VEGF-R2 is of responsible for recruiting
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cells in the developing vasculature [Barleon,
1996]; induction of matrix metalloprotein-
ases (MMPs) [Hiratsuka et al., 2002] and
secretion of additional growth factors from the
developing endothelium (Fig. 1) [LeCouter
et al., 2003].
HIF-a (Hypoxic-inducible factor-a). Tis-

sue hypoxia is associated with rapid tumor
growth andVEGFupregulation throughHIF-1,
which increases transcription and the stability
of VEGFmRNA [Shweiki et al., 1992; Semenza,
1996]. HIF-1 is a ubiquitous bHLH/PAS
(basic helix-loop-helix/Per-Arnt-Sim homology)
transcription factor that is composed of the two
basic helix-loop-helix PAS proteins, HIF-1a
and HIF-1b [Wang et al., 1995]. Three a
subunits, such as HIF-1 a, HIF-2 a, and HIF-3
a, have been identified. Under normoxia,
prolyl hydroxylation of the HIF-a subunit is
enhanced, and mediates interaction with
von Hippel-Lindau protein (pVHL), E3 ubiqui-
tin ligase that then undergoes proteosomal
degradation. At low oxygen levels, prolyl
hydroxylation ofHIF is inhibited, escaping from
degradation through pVHL. HIF-a will trans-
locate into the nucleus to form a heterodimeric
complex with HIF-b and subsequently stimu-
late gene transcription [Schofield and Ratcliffe,

2004]. As illustrated in Figure 2, HIF induces
transcriptional activation of genes regulating
key processes in tumor progression, such
as angiogenesis (Ang-2), glucose metabolism,
(glucose transporter 1), adhesion (E-cadherin,
Vimentin), migration (TGF-a, c-Met), proteol-
ysis (Cathepsin D, uPAR, MMP2), and pH (CA
IX; carbon anhydorase 9) [Pouyssegur et al.,
2006]. Tumors that exhibit abundant HIF-1
stabilization have a greater likelihood of devel-
oping metastatic relapse and shorter survival
with a subset of HIF target genes acting as
mediators ofmetastastic progression [Semenza,
2000]. HIF-1 induces the chemokine receptor
CXCR4 in renal cell carcinoma cells, which
promotes organ-specific metastatic dissemina-
tion [Staller et al., 2003]. Moreover a mutation
in von Hippel-Lindau (VHL) suppressor gene
results in VHL hereditary cancer syndrome
leading to sporadic clear cell renal cell cancers
(CCRCC) [Kaelin, 2002].

Angiopoietins. Angiopoietins are ligands
for TIE-2 receptors located on endothelial cells.
Angiopoietin-1 (Ang1) interacts with the TIE-2
receptor to recruit periendothelial cells, such as
pericytes and vascular smooth muscle cells, for
stabilization of the new vasculature [Luo et al.,
1997]. Ang2 interacts with TIE-2 to increase

TABLE I. Endogenous Regulator of Angiogenesis

Classification Angiogengesis stimulators Angiogensis inhibitors

Growth factor VEGF
PDGF
aFGF and bFGF
TGF-a and b TGF-b
HGF
Angiopoetins-1 Angiopoietin-2
GCSF

Necrosis factor TNF-arufa
Chemokine Platelet factor 4 (PF4)
Membrane protein Integrin
Hormone Proliferin 2-Methoxyestradiol
Transcription factor HIF-1, HIF-2
Cytokine IL-8 IL-12

IFN-a and b
Protease MMPs
Protease inhibitor TIMP-1, TIMP-2

Maspin
PEX

Plasminogen Angiostatin
Plasminogen Kringle 5

Collagen Endostatin
Fibronectin fragment

Others Endothelins Antithrombin III
PEDF
Troponin I
TSP 1

TSP-1; thrombospondin-1, PEDF; pigment epithelial-derived factor, TIMP; tissue inhibitor of metal-
loproteinase INF; interferon, IL; interleukin, HIF; hypoxia-inducible factor, MMPs; matrix metal-
loproteinases VEGF; vascular endothelial growth factor, TGF; transforming growth factor, PDGF;
platelet-derived growth factor HGF; hepatocyte growth factor, FGF; fibroblast growth factors: acidic
(aFGF) and basic (bFGF) GCSF; Granulocyte colony-stimulating factor.
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vascular permeability, enhancing susceptibility
to angiogenesis stimulators in the presence of
VEGF, while in its absence sensitizing the
endothelium to endogenous inhibitors [Davis

et al., 1996]. The pattern of VEGF-dependent
signaling of TIE-2 receptors dictates angio-
genesis [Puri et al., 1995; Sato et al., 1995]; as
suggested by embryonic lethality of TIE-2

Fig. 2. Hypoxia takes control of tumor angiogenic res-
ponses. HIF is a heterodimeric transcription factor consisting
of a and b subunits. Under normoixic conditions, prolyl-
hydroxylase domain (PHD) protein hydroxylates the two proline
residues (Pro402 and Pro564) in the oxygen-dependent degra-
dation domain (ODDD) of HIF-1 a. Hydroxylation of these
proline residues allows HIF-1a to interact with von Hippel

Lindau tumor suppressor protein (VHL), leading to rapid
ubiquitilation and degradation of HIF-1a. HIF1-a escape from
theVHLmediateddegradationallowsbindingwithHIF-1b at the
nuclear response element, thus activating transcription of target
genes including VEGF and bFGF. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.
com.]

Fig. 1. Mechanistic interaction between VEGF and FGF
signaling in the tumor microenvironment. Tumor epithelial cells
produce angiogenic factors such as VEGF, bFGF, ETs, and
angiopoietins; BEGF is also secreted by stromal cells. Integrin
(a(v)b3) is upregulated in growth-factor activated endothelial
cells. MMPs mediate degradation of the ECM and cooperate to
enhance angiogenesis and vascular remodeling. Tumor epithe-

lial cells communicate with the microenvironment via growth
factor signaling interactions: PDGFandTGF-bby tumor cells and
EGF and HGF by stromal cells. PDGF-B produced by both
endothelial and tumor epithelial cells, stimulates VEGF expres-
sion by pericytes to enhance endothelial cell survival. CEP cells
from the bone marrow also contribute to new blood vessel
formation.
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knockout mice due to lack of brain capillary
sprouting [Puri et al., 1995].
Fibroblast growth factors. Basic fibro-

blast growth factor (bFGF) was the first mole-
cule to be identified as a pro-angiogenic agent
[Shing et al., 1984]. bFGF binds tightly
to heparin sulfate proteoglycans (HSPGs), on
the cell surface and ECM [Vlodavsky et al.,
1991], and this complex subsequently stabilizes
bFGF from heat and proteolysis [Flaumenhaft
et al., 1990]. FGFs interact with FGF-receptors
(FGFR-1 or FGFR-2), leading to endothelial cell
proliferation [Cross andClaesson-Welsh, 2001],
degradation of the, stimulation of chemokines
toward endothelial cell migration, regulation of
integrin and cadherin expression, and modu-
lation of cell–cell interactions [Presta et al.,
2005]. Engaged in a dynamic cross-talk, FGF,
can directly upregulate VEGF expression in
endothelial cells [Tille et al., 2001]. A syner-
gistic action between VEGF and FGF generates
a significant angiogenic response in target cells
[Xue and Greisler, 2002], and consequently
VEGF targeting antibodies and VEGFR-2
antagonists inhibit angiogenesis mediated by
both VEGF and FGF [Cross and Claesson-
Welsh, 2001] (Fig. 1).
Matrix metalloproteinases. MMPs is a

family consisting of 16members of zinc-depend-
ent proteases [Kleiner and Stetler-Stevenson,
1999] that mediate ECM degradation. The four
major subgroups of this protease family are
gelatinases, collagenases, stromelysins, and
membrane associated proteases [Jiang and
Muschel, 2002]. Most MMPs released in their
inactive state are cleaved to activation by other
MMPsor other serine proteases such asplasmin
and urokinase-type plasminogen activator
[Birkedal-Hansen et al., 1993; Goetzl et al.,
1996]. Tissue inhibitors of matrix metallopro-
teinases (TIMPs) provide an additional level
of regulation for MMP activation [Birkedal-
Hansen et al., 1993]. ECM undergoes constant
remodeling in normal homeostasis and MMPs
function to remove proteins from the basement
membrane during this remodeling [Kleiner and
Stetler-Stevenson, 1993]. Their cooperation
targets degradation of basement membrane
of the vascular endothelium and ECM, thus
creating a passageway in these physical bar-
riers toward new capillary formation [Kleiner
and Stetler-Stevenson, 1999].
Integrins. Integrins are transmembrane

proteins that serve a role as primary mediators

of cell-ECM interactions that are functionally
involved in determining tumor angiogenic
response during cancer progression to meta-
static disease. Integrins (heterodimers contain-
ing two distinct chains, a and b subunits),
recognize themajor adhesiveECMcomponents,
fibronectin and laminin, toward regulation of
cell proliferation, cell survival, anoikis, and
migration [Giancotti and Ruoslahti, 1999; Goel
andLanguino, 2004]. Angiogenic growth factors
such as VEGF and pFGF can exert a profound
positive effect on the activity and expression of
several integrins, such as avb3, avb5, avb1, a3b1,
a3b1, a6b1, a6b4 [Klein et al., 1993]. Additional
angigogenic factors, such as class 3 semaphor-
ins (SEMA3 proteins), control vascular remod-
eling via targeting integrin [Serini et al., 2003].
Increased expression of integrin avb3 is detected
in growth factor-activated endothelial cells in
tumor blood vessels and granulation tissue
[Enenstein et al., 1992; Brooks et al., 1994],
while very low expression was detected in rest-
ing blood vessels [Arap et al., 1998]. Expression
of the avb3 in tumor endothelium correlated
with the aggressive phenotype in neuroblas-
toma [Erdreich-Epstein et al., 2000]. Moreover,
blocking integrin avb3 with monoclonal anti-
body (Mab) mediated endothelial cell apoptosis
and inhibited blood vessel formation [Enenstein
et al., 1992], implicating its functional signi-
ficance in angiogenesis. Consequently, avb3
integrin represents an attractive tumor vascu-
lature target [Hood et al., 2002; Ruoslahti,
2002]. Nanoparticles containing agents linked
with an anti-avb3 antibody [Sipkins et al., 1998]
or bacteriophage with avb3 binding RGD pep-
tide [Arap et al., 1998] effectively targeted
tumor vasculature. Integrins also contribute to
signal transduction from the extracelluar envi-
ronment to the intracellular network mediated
by integrin-activated signaling molecules, such
as focal adhesion keinase (FAK), phosphatidy-
linositol 3-kinase (PI 3-kinase), and members
of the extracellular signal-regulated kinase 1
and 2/mitogen activated protein (ERK1 and
2/MAP) kinase family to regulate cell pro-
liferation, migration, and apoptosis of tumor
and endothelial cells [Fornaro et al., 2001;
Nikolopoulos et al., 2004].

Endothelins. Endothelins, a class of pro-
teins involved in vasoconstriction, have also
been linked to angiogenesis. Epithelial cells
produce three types of endothelins, ET-1, 2, and
3 [Kopetz et al., 2002] that interact with two
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receptors, ET-A and ET-B. ET-3 stimulates
ET-B receptor to induce endothelial cell growth
and blood vessel formation [Lara et al., 2004]. A
dynamic cross-talk between ET-1 and ET-A
receptor promotes VEGF release [Goligorsky
et al., 1999] leading to a strong angiogenic
response [Salani et al., 2000].

TARGETING TUMOR VASCULARITY:
THERAPEUTIC SIGNIFICANCE

Several angiogenesis-targeting approaches
are currently evaluated in clinical trials for
their therapeutic efficacy and long-term cli-
nical benefits, while others are mechanistically
exploited toward the development of novel
therapeutic modalities for advanced urologic
malignancies. Themolecular platforms for such
approaches are considered in Figure 3.

Kidney Cancer

The clinical problem. Renal cell carci-
noma accounts for more than 30,000 new cases
of cancer and 12,000 deaths in the USA
annually. The incidence of RCC has increased
by >30% in the last decade [Motzer et al., 1996]
and the annual mortality-to-incidence ratio for
RCC is significantly higher than for other
urological tumors. In spite of recent improve-

ment in imaging for early diagnosis, 25–30% of
patients have metastasis at presentation; the
5 year survival rate for patientswithmetastasis
is less than 10% and the overall 5-year survival
rate is 60% [Kirkali et al., 2001; Schrader et al.,
2006]. The current therapeutic responses in
metastatic RCC patients are poor. Indeed
combination regimes of recombinant cytokines
with interferon or interleukin-2, currently
presumed to be the most effective therapy,
exhibit modest response rate of 10–20%
[Schrader et al., 2006]. The options for those
patients failing cytokine-based therapy are
limited, hence the emerging clinical challenge.
VHL syndrome is an autosomal dominant neo-
plasia syndrome that results from a germline
mutation in theVHL gene [Crossey et al., 1994].
This gene mutation is found in 34–57% of clear
cell RCC tumors [Rini, 2005; Rini and Small,
2005]; moreover, VHL gene inactivation
through methylation of VHL gene is reported
in 5–19%ofRCC tumors [Rini andSmall, 2005].
VHL inactivation in the low-grade and smaller
(pT1) tumors, suggests that VHL inactivation
may be involved in tumor initiation [Schrader
et al., 2006]. Since VHL specifically targets the
hydroxylated HIF-1 a subunit and mediates
proteasomal degradation, mutations or inacti-
vation of VHL genes that inhibit HIF-1a

Fig. 3. Targeting tumor vascularity: VEGF inhibitors take
central stage. VEGFbinding to its receptormediates dimerization
of VEGFR and induces autophosphorylation of RTKs, which
initiate activation of several downstream pathways, regulating
endothelial cell proliferation (via PKC-RAF-MEK-ERK), survival
(via PI3K-AKT/PKB), migration, (via p38-MAPK) and vascula-
ture permeability (via PI3K-AKT/PKB-eNOS). Bevasizumab, a
neutralizaing antibody against VEGF directly targets VEGF;

Thalidomide inhibits VEGF transcription; Suramin is a non-
specific inhibitor of multiple growth factor signalig pathways;
Chimeric soluble receptor (VEGF-Trap) interferes with VEGF
binding to its receptor; AE-941 and DC101 are anti-VEGFR-2
antibody abrogating VEGF binding to its receptor. SU011248,
Bay 43-9006, PTK787 inhibit phosphorylation of VEGF receptor.
[Color figure canbe viewed in theonline issue,which is available
at www.interscience.wiley.com.]
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degradation and enhance transcription of
hypoxia-related genes including VEGF [Rini,
2005].
More than 90% of hypervascular renal cell

tumors express elevated VEGF mRNA com-
pared to normal kidney [Hemmerlein et al.,
2001]. Strong correlations have also been
documented between VEGF up-regulation in
RCC tumorswith nuclear grade and TNMstage
[Paradis et al., 2000; Lee et al., 2001] aswell as a
poor prognostic outcome [Paradis et al., 2000].
The majority of RCC tumors harboring a VHL
mutation express HIF that significantly corre-
lates with elevated VEGF [Na et al., 2003]. This
evidence easily supports the concept that VHL
inactivation in RCC is causally involved in
promoting tumor angiogenesis via VEGF upre-
gulation and consequently directly blocking
VEGF, becomes an attractive therapeutic strat-
egy for managing advanced RCC.
Specific single inhibitors such as TNP-470

(anti-VEGF) [Stadler et al., 1999] and SU5416
(Tyrorsine kinase inhibitor) [Kuenen et al.,
2003] have failed to provide a therapeutic
benefit; however, targeting multiple signal-
ing pathways with combination srtategies
bevasizumabþ erlotinib(PR:40%) [Hainsworth
et al., 2004] or with the new tyrosine kinase
inhibitor SU011248(PR:40%) [Mendel et al.,
2003] have successfully delivered significant
therapeutic responses. The leading anti-angio-
genic molecules that had been investigated in
clinical trials for RCC treatment are discussed.

Targeting Angiogenesis in RCC:
Therapeutic Outcomes and Clinical Promise

Thalidomide therapy. Thalidomide is an
anti-inflammatory and immunosuppressive
agent that blocks angiogenesis through inhibit-
ing growth factor, such as bFGF and VEGF,
down regulate cytokines, such as tumor
necrosis factor-a (TNF-a), modifies cell adhe-
sionmolecule expression, and promotes natural
killer and T-cell activity [Rini and Small, 2005].
Clinical trials assessing the therapeutic efficacy
of thalidomide as a single-agent therapy,
revealed an overall response rate of 5.2% (0–
16.7%) [Rini and Small, 2005]. Phase II studies
with combination regimes of interferon-a or
interferon-a plus capecitabine with thalido-
mide, yielded a distinct objective response of
20% in both trials [Hernberg et al., 2003; Amato
and Rawat, 2006]. Furthermore, combination

therapy of interleukin-2 plus thalidomide (in a
phase II study) resulted in 41% response, with
further modification enhancement by macro-
phage colony-simulatinghormone [Amato et al.,
2006]. Combination of bevasizumab with thali-
domide failed to yield any therapeutic benefit
over monotherapy [Elaraj et al., 2004].

Suramin. Suramin is a polysulphonate
naphthylurea which has a potential to inhibit
binding of a number of growth factors to their
receptors, which act not only for tumor epithe-
lial cells but also endothelial cells [Stein, 1993].
A phase II trial of suramin was conducted in
26 patients with advanced renal cell carcinoma,
but the therapeutic responses were minimal
(minor response observed for five patients
for >3 months), while the toxic side effects
were serious including an immune-mediated
thrombocytopenia and Staphylococcus sepsis
without neutropenia [Motzer et al., 1992].
Another suramin-based phase II clinical trial
in 22 patients with advanced renal cell carci-
noma revealed no objective response [Schroder
et al., 2001], challenging its therapeutic value
in RCC.

Bevacizumab. Bevacizumab is a recombi-
nant humanMabwhich binds and neutilizes all
the active isoform of the VEGF. In a preclinical
model, Bevasizumab inhibits VEGF-induced
proliferation of endotherial cells, leading to
inhibition of tumor growth in a number of
primary xenograft and metastatic models
[Presta et al., 1997; Mordenti et al., 1999; Hu
et al., 2002]. A Phase II clinical trial to evaluate
the therapeutic efficacy of bevasizumab inRCC,
resulted in a partial response rate (10% in high
dose group) and prolonged time to disease
progression [Yang et al., 2003]. An equally
partial response was achieved by the combina-
tion of bevacizumabwith the EGF-R antagonist
(erlotinib), in 57 patients with metastatic RCC
[Hainsworth et al., 2004].

SU011248. SU011248 is a multi-targeted
receptor tyrosine kinase inhibitor which has
reported to potently inhibit PDGF receptors
a and b, VEGFR-1 and -2, KIT, and FLT3 (fms-
related tyrosine kinase/Flk2/Stk-2) [Motzer
et al., 2004, 2006]. A recently conductedAphase
II trial using SU011248 in advanced 63 RCC
patients (failing to respond initial cytokine
treatment), demonstrated a partial response
achieved in 25 patients (40%), with major
toxicity including lymphopenia, elevated lipase,
and fatigue/asthenia [Mendel et al., 2003].
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PTK 787. PTK 787 is also a tyrosin kinase
inhibitor of VEGFR-1, VEGFR-2, and PDGFR-
b. In vivo experiment using murine renal
carcinoma model demonstrated that oral
administration of PTK787 (50 mg/kg) to mice
significantly inhibit the growth of the primary
tumor and metastasis compare to control group
[Wood et al., 2000]. Recently George et al.
reported a phase I/II clinical trial in patients
with metastatic RCC. The results indicate a 5%
of partial response rate, and 15% of minor
response (25–50% shrinkage) rate with signifi-
cant differences in vascular permeability and
reduction in blood flow [George et al., 2003].

Bay 43-9006. Bay 43-9006 is an orally bio-
available bi-aryl urea Raf kinase inhibitor
that directly inhibits VEGFR-2, VEGFR-3, and
PDGFR-b in a Ras-dependent human tumor
xenograft model [Lyons et al., 2001; Wilhelm
et al., 2003]. In the clinical setting, a phase II
randomized study of Bay 43-9006, in refractory
solid tumors including 202 metastatic RCC
patients showedapositive therapeutic response
[Ratain et al., 2006]. With a large number of
patients (42%) achieving an initial response
(tumor shrinkage), and a significantly longer
median progression-free survival (PFS) in res-
ponse to sorafenib treatment compared to
the placebo [Ratain et al., 2006]. An interim
phase III analysis indicated that Sorafenib
monotherapy results in a significant increase
in progression-free survival in patients with
advanced RCC, delivering promising thera-
peutic value.

SU5416. SU5416 is a small organic molecule
that blocks VEGF-mediated signaling by in-
terfering Flk-1, a transmembrane tyrosine
kinase. In preclinical studies, SU5416 inhibited
endothelial cell proliferation and neovasculiza-
tion [Fong et al., 1999]. In a phase II trial of
SU5416 conducted in 29 patientswith advanced
or metastatic RCC, no objective therapeutic
response was observed [Kuenen et al., 2003].
Furthermore, the combination approach of
SU5416 with interferon-a, yielded no objective
response, although half of the patient popula-
tion demonstrated stable disease [Lara et al.,
2003].

VEGF-trap. VEGF trap is a decoy receptor
created from the combination of VEGFR-1
immunoglobulin (Ig) domain2 and VEGFR-2
Ig domain 3 attached to the human IgG1. This
artificial protein binds VEGF with 100-fold
increase affinity compare to bevasizumab [Rini,

2005]. In vitro study demonstrated that VEGF-
trap efficiently inhibited phosphorylation of
VEGFR-2 and VEGF-induced endothelial cell
proliferation. In vivo mouse model, VEGF-trap
significantly inhibits the growth and vascular-
ity of various tumors [Holash et al., 2002]. A
phase-I clinical trial usingVEGF-trap involving
33 patientswith refractory solid tumors, includ-
ing nine metastatic RCC patients (escalating
dose cohorts, 0.025–0.8 mg/kg), revealed no
positive response [Dupont et al., 2004].

AE-941. The identification of anti-angio-
genic and anti-tumor growth properties associ-
ated with the shark cartilage led to the
synthesis of several novel compounds. AE-941
(Neovastat) is a pure shark cartilage compound
that selectively inhibits -2, -9, and -12 and
competes for the binding of VEGF to its receptor
(VEGFR-2), resulting in endothelial cell apop-
tosis [Batist et al., 2002]. A phase-I trial of
AE-941 was performed in 144 patients with
refractory solid tumors, including patients
with metastatic RCC. As shown on Table II,
treatment with AE-941 (either an escalated
or high single dose), resulted in an objective
response in amere 14% of patients [Batist et al.,
2002].

Prostate Cancer: The Leading Tumor in Males

Prostate cancer is the most common malig-
nancy and is the second leading cause of cancer
death in males [Weir et al., 2003]. The initial
standard therapy for locally advanced or meta-
static disease is androgen deprivation therapy
via surgical or medical castration. The initial
therapeutic response to the antiandrogen-ther-
apy, is only brief (8month-3 years), andprostate
cancer patients become refractory to additional
treatment, as tumors eventually relapse to an
androgen independent state [Daneshgari and
Crawford, 1993] and development of hormone
refractory prostate cancer (HRPC). Docetaxel
was shown to prolong survival in patients
with HRPC [Petrylak et al., 2004; Pronzato
and Rondini, 2005], but chemotherapeutic
strategies for effective disease control are still
required. The significance of angiogenesis in
human prostate cancer progression has been
firmly established [Borre et al., 1998; Bono
et al., 2002]. Several independent studies
documented a significant correlation between
microvessel density (MVD) with Gleason score,
pathological stage, and patient survival [Borre
et al., 1998; Bono et al., 2002]. Furthermore

698 Sakamoto et al.



VEGF levels are significantly increased in
prostate tumors (relative to normal tissue),
an upregulation that directly correlates with
tumor stage, differentiation and disease speci-
fic survival. A strong expression of VEGF is
detected in neuroendocrine-differentiated (NE)
tumor cells [Borre et al., 2000]. Serum VEGF
levels are significantly higher in metastatic
prostate cancer patients compared to localized
disease [Duque et al., 1999]. HIF, a key
mediator of VEGF expression, is highly
expressed in prostate cancer, compared to
normal and benign prostate tissue [Du et al.,
2003]. HIF-1a mutations (homozygous P582S)
in the oxygen-dependent degradation domain
of HIF-1a, which mediates continuous activa-
tion of HIF, are significantly associated with
increased risk for prostate cancer [Orr-Urtreger
et al., 2007], indicating the importance of HIF-
1a mediated VEGF regulation in prostate
tumorigenesis (Fig. 2).
Targeting prostate tumor vascularity:

Is there a therapeutic value? Several clin-
ical trials using potent anti-angiogenic drugs,

TNP-470 [Logothetis et al., 2001], 2-methox-
yestradiol [Sweeney et al., 2005] and SU5416
[Stadler et al., 2004] failed to deliver any
positive therapeutic efficacy in prostate cancer
patients with hormone refractory disease. Dis-
appointing as these outcomes might be, a series
of new angiogenesis targeted approaches have
emerged from the laboratory to the clinic,
promising considerable clinical benefit.

Selective vasculature targeting. Recent
work by Ruoslahti et al. identified the peptides
that specifically recognize the vasculature in
the prostate through screening phage-dis-
played peptide libraries. Intravenous injection
of chimeric peptide consisting of the SMSIARL
homing peptide, linked to a proapoptotic pep-
tide, induced prostate tumor destruction and
delayed cancer development in TRAMP mice
[Arap et al., 2002].

Doxazosin. Experimental evidence indi-
cates that the quinazoline-based compounds,
such as doxazosin and terazosin (clinically used
for treatment of hypertension and BPH), may
also function in inducing prostate smooth

TABLE II. Summary of Clinical Trials

Drug Cancer Objective Response References

Anti VEGF
Suramin RCC 0–4% Motzer et al. [1992, 1996, 2004, 2006]

Schroder et al. [2001]
HRPC 7–15% Small et al. [1999, 2000, 2002]

Plus hydrocortisone HRPC 33%(PSA) Small et al. [1999, 2000, 2002]
TNP-470 RCC 0% Stadler et al. [1999, 2004]

HRPC 0% Logothetis et al. [2001]
Thalidomide RCC 0–16.7% Rini et al. [2005]

HRPC 37.5%(PSA) Drake et al. [2003]
Plus Interferon-a RCC 20% Hernberg et al. [2003]

Interferon-aþcapecitabine RCC 20% Amato [2006]
IL-2 RCC CR 7%, PR 33% Amato et al. [2006]
Paclitaxel/doxorubicin HRPC 82%(PSA) Amato et al. [2006]
Docetaxel HRPC 50%(PSA) Leonard et al. [2003]
GM-CSF HRPC 23%(PSA) Dreicer et al. [2005]
Bevacizumab RCC 0% Elaraj et al. [2004]

2-methoxyestradiol HRPC 0% Sweeney et al. [2005]
Neutralizing Ab

Bevacizumab RCC 10% Yang et al. [2003]
Plus Docetaxelþestramustine HRPC 77%(PSA) Picus et al. [2003]

Erlotinib RCC 25% Hainsworth et al. [2004]
Cisplatinþgemcitabin BT on going Sternberg et al. [1988]
Paclitaxel BT on going Sternberg et al. [1988]
Docetaxelþprednisoneþthalidomide HRPC on going Schofield and Ratdiffe [2004]
Docetaxelþprednisone HRPC on going Schofield and Ratcliffe [2004]

TK inhibitor
SU5416 RCC 0% Kauenen et al. [2003]

HRPC 0% Stadler et al. [1999, 2004]
PTK 787 RCC 5.0% George et al. [2003]
SU011248 RCC 40% Mendel et al. [2003]

Novel approach
AE-941 RCC 14%(high dose) Batist et al. [2002]
VEGF Trap RCC 0% Dupont et al. [2004]

RCC, renal cell carcinoma; HRPC, hormone-refractory prostate cancer; BT, bladder tumor (PSA), More than 50% reduction of serum
prostate-specific antigen (PSA) is achieved after treatment.
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muscle cell death via apoptotic pathways
involving activation of TGF-b1-mediated apop-
totic signaling and inhibition of Akt [Garrison
and Kyprianou, 2006]. Growing evidence also
implicates anoikis (ECM detachment-induced
apoptosis) in prostate tumor epithelial and
endothelial cells in response to quinazolines
[Rennebeck et al., 2005], potentially via tar-
geting VEGF-mediated angiogenic response
[Garrison and Kyprianou, 2006].

Suramin. The therapeutic efficacy of sur-
amin was analyzed in a large population of
patients (390) with advanced prostate cancer
with a randomized dosing. The objective res-
ponse rate was 9–15%, while the PSA response
rates were 24–34% [Small et al., 2002]. In a
randomized phase-III trial of suramin in com-
bination with hydrocortisone conducted in
460 hormone-refractory prostate cancer pati-
ents, patients receiving suramin had higher
PSA response rate, compared to the hydro-
cortisone arm [Small et al., 2000] (Table II); but
still, serious limitations are associated with the
clinical efficacy of this agent.

Thalidomide. Preclinical experiments re-
vealed that treatment with N-substituted
thalidomide, a potent angiogenesis inhibitor,
analog CPS11, (targeting platelet-derived
growth factor alpha) led to 90% inhibition of
tumor growth and 64% reduction in tumor
vascularity of PC-3 human prostate xenografts
[Ng et al., 2004]. An open trial of the efficacy
and safety of thalidomide in 20 patients with
androgen-independent prostate cancer resulted
in significantly reduction inPSA levels in 35%of
patients [Drake et al., 2003]. Prostate cancer
patients with hormone refractory-disease ex-
hibited a relatively good response to a combina-
tion treatment of docetaxel and thalidomide, by
achieving a significantly improved median
overall survival (28.9 months) compared to
docetaxel-alone (14.7 months) [Leonard et al.,
2003]. In a triple-combination strategy of
paclitaxel and doxorubicin with thalidomide, 9
out of 12 patients showeda 50%decrease inPSA
[Amato and Sarao, 2006]. Combinational ap-
proaches using granular-macrophage colony-
stimulating factor (GM-CSF) have been report-
ed with some therapeutic promise. GM-CSF
regulates the dendritic cell and tumor-specific
cytokine T-cell mediated response [Small et al.,
1999], and clinically GM-CSF in combination
with thalidomide results in a significant PSA
response (23%) [Dreicer et al., 2005].

Bevasizumab. Aphase-II Cancer and Leu-
kemia Group B (CALGB) 90006 trial of bevasi-
zumab in combination of docetaxel, and
estramustine with a premedication with deca-
dron in chemotherapy-naı̈ve HRPC delivered
promise (with themajority of patients achieving
>50%PSAreduction) [Picus et al., 2003] and led
to two clinical trials. The ongoing clinical trials
are an NCI-phase-II study of a four-drug
combination strategy of docetaxel, predni-
sone, thalidomide, and bevacizumab in men
with chemotherapy-naı̈ve progressive hormone-
refractory prostate cancer (ClinicalTrials.gov,
http://clinicaltrials.gov/ct/show); and a CALGB
phase III, double-blind, placebo-controlled
trial of docetaxel plus prednisone with or with-
out bevacizumab (ClinicalTrials.gov, http://
clinicaltrials.gov/ct/show).

SU5416. The initial in vivo anti-tumor
effect of SU5416, a small molecule VEGFR2
inhibitor, was determined in the transgenic
adenocarcinoma of the mouse prostate
(TRAMP) mouse model. Administration of
SU5416 to mice (16–22 weeks of age; highly
expressing VEGFR-2), resulted in a dramatic
decrease in tumor-associated mean vessel den-
sity and increased apoptosis [Huss et al., 2003].
Further preclinical studies using PC-3 human
prostate cancer xenografts, demonstrated that
a combination regime of the VEGFR2 inhibitor,
SU5416 with another potent anti-angiogenesis
agent, endostatin, led to a significant delay
in the onset of tumor progression [Abdollahi
et al., 2003].

Bladder Cancer: The Clinical Problem

Bladder cancer is the second most common
malignancy in the genitourinary tract and fifth
most common solid cancer in the United States
and the incidence continuously increasing in
recent years. Fifty-four thoudand patients are
diagnosed and 12,000 patients die of bladder
cancer annually [Greenlee et al., 2000]. The
majority of bladder transitional cell carcinoma
(TCC) of the bladder cases is of the superficial
type (70%), while the rest are invasive
and highly metastatic tumors [Beecken et al.,
2005]. The standard treatment for operable
invasive TCC is radical cystectomy and bladder
tumors are initially sensitive to conventional
chemotherapy approaches; themedian survival
in response to methotrexate, vinblastine, adria-
mycin, and cisplatin regimen however, is
only 13–15 months due to emergence of
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chemoresistance [Sternberg et al., 1988]. Dis-
tinct angiogenic pathways differentiate super-
ficial bladder tumors from invasive tumors.
Superficial bladder tumor consists of a papillary
morphology with an integrated branching
vascular tree, expressing VEGF. In contrast,
invasive solid bladder tumors contain a disor-
ganized vascular networkwith necrotic regions,
primarily expressing bFGF [O’Brien et al.,
1997]. Elevated VEGF levels correlate with
early recurrence and progression of superficial
bladder tumors [O’Brien et al., 1995;Crewet al.,
1996, 1997], as well as resistance to chemo-
therapy in patients with advanced disease
[Slaton et al., 2004]. Pre-treatment of TCC cells
with anti-sense VEGF increased cell sensitivity
to conventional chemotherapeutic agents such
as Mitomycin C, providing a promising possi-
bility for adjuvant therapy [Krause et al., 2005].
Since bFGF also contributes to bladder cancer
progression via its ECM involvement, this
player becomes a prime candidate for therapeu-
tic targeting [O’Brien et al., 1997; Guo et al.,
2003].
Therapeutic efficacy of anti-angiogenic

approaches in bladder cancer
TNP-470. TNP-470 is a synthetic analog of

fumagillinwhich blocks the growth of newblood
vessels by inhibiting methionine amino pepti-
dase, an enzyme critically important for endo-
thelial cell proliferation [Ingber et al., 1990].
The therapeutic efficacy of TNP-470 in inva-
sive bladder cancer has been investigated in
mouse models using KK-47 and MGH-U1 TCC
cancer cell xenografts. Treatment with TNP-
470 significantly suppressed tumor growth and
vascularity, with limited toxicity [Beecken
et al., 2000].
Suramin. Suramin, a potent antagonist of

VEGF, is a polysulphonate naphthylurea,
exerts distinct anti-tumor effects in mouse
models of tumorigenesis. Suramin administra-
tion in rats bearing N-methyl-N-nitrosurea
(MNU)-induced bladder tumors (twice a week
for 18weeks) resulted in0–10%of treatedgroup
developing papillary bladder tumors [Bikfalvi
et al., 1991]. A dose-escalation phase-I study
with suramin ina small number of patientswith
a history of recurrent superficial bladder cancer
(n¼ 12), resulted in a considerable suppression
of urinary VEGF [Graham et al., 1995], but
failed to deliver a therapeutic effect.
VEGFR monoclonal antibody DC101.

Preclinical-testing of the synergetic effect of

VEGF blockade with other chemotherapeutic
agents in bladder cancer promises enhanced
efficacy. Combination of anti-VEGFR Mab
therapy with Paclitaxel chemotherapy in TCC
mouse model, resulted in a significant tumor
regression and inhibition of lymph node meta-
stasis, driven by endothelial cell apoptosis [Ord
et al., 2005].

Bevacizumab. Bevacizumab is another
Mab designed to target all VEGF isoforms, with
an established antiproliferative profile in vari-
ous cancers [Inoue et al., 2000]. Several ongoing
phase-II clinical trials, including the neoaju-
vant Bevacizumab with cisplatin and gemcita-
bine followed by radical cystectomy, adjuvant
bevacizumab, and paclitaxel in patients with
muscle-invasive, resectable TCC, and Bevaci-
zumab, in combination with cisplatin and
gemcitabine in patients with metastatic TCC
are ongoing, in anticipation of successful out-
comes [de Gramont and Van Cutsem, 2005].

CONCLUSION

Recent advances toward a better understand-
ing of the molecular mechanisms underlying
urologic malignancies enables us to target
angiogenic signaling pathways regulating
tumor vascularity. Tumor-selectivity of angio-
genic-targeting therapeutic approaches is
expected to produce lower toxicity and higher
efficacy than standard chemotherapeutic
approaches. The functional contribution of lead
angiogenic factors toward increased vascularity
characterizing advanced metastatic tumors,
must be considered in the context of the
supporting vasculature and reactive stroma
within the tumor microenvironment (Fig. 1).
The fact that agents specifically inhibiting
VEGF signaling have a limited efficacy in terms
of tumor suppression translating into a mean-
ingful therapeutic response, points to the
realization that blocking VEGF signaling alone
might not be sufficient to induce complete
inhibition of tumor growth. Angiogenic factors
controlling the dynamics of microenvironment
with functional redundancy, are accountable
for the resulting drug-resistance. Inhibition of
VEGFR results in upregulation of PDGF and
FGF-2 [Carmeliet, 2005; Casanovas et al.,
2005]. Furthermore, one cannot underes-
timate targeting the supporting stroma-derived
vasculature, since it may determine the meta-
static potential controlled by PDGF [Blouw
et al., 2003; Willett et al., 2005]. Combination
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modalities may provide clinical benefit by
enhancing endothelial cell sensitivity to anti-
angiogenic/cytotoxic agents, in addition to
delaying acquisition of drug resistance [Brow-
der et al., 2000; Dong et al., 2004].

Overexexpression of HIF correlates with the
recurrence and progression of superficial uro-
thelial bladder cancer [Klement et al., 2000],
while in prostate tumors HIF expression corre-
lated with expression of VEGF and androgen
receptor levels [Theodoropoulos et al., 2005].
The recent screening of the small molecule
inhibitor for HIF-1 activity [Boddy et al.,
2005], may provide an effective lead in the
development of novel approaches for optimizing
existing angiogenesis-based therapeutic strat-
egies in the treatment of urologic malignancies.
Inorganic nanostructure ‘‘nanoparticle’’ tech-
nology has recently generated wide interest in
thefield ofmolecularmedicine [Tanetal., 2005].
Nanoparticle has emerged as a novel intra-
vascular probe for both diagnostic imaging (e.g.,
MRI; magnetic resonance imaging) and ther-
apeutic intervention (drug delivery). Ruoslahti
et al. recently developed a nanoparticle-tumor
targeting strategy by securing delivery and
stimulating its intravascular accumulation
via ‘‘self-amplification,’’ involving coupling
clot-binding peptide with an MRI enhancer
[Maynard and Pui, 2007]. Subsequent efforts
established a novel protease-triggered self-
assembly nanoparticle, ‘‘a neutravidin-and-
biotin-functionalized superparamagnetic iron
oxide nanoparticles,’’ which amplify the assem-
bly of nanoparticles, upon triggered by MMP-2
within the tumor site [Simberg et al., 2007].
This work provided new routes for exploiting
tumor-delivered molecular therapeutics for the
treatment of highly-vascular tumors without
affecting normal vasculatity.

In summary, as the success of the thera-
peutic efficacy of the various anti-angiogenic
approaches for the treatment of urologic
tumors has yet to be proven in terms of long-
term clinical benefit, the challenge remains to
select targeting of key angiogenesis signaling
pathways that can be tailor-made for and
targeted to an individual tumor. The angio-
genic profile of urologic tumors may vary
depending on the age of individual patients
and stage/grade of tumor [Harris et al., 2006].
Proteomic profiling of angiogenesis effectors
dictating tumor vasculature in individual
patients, will enable treatment optimization in

order to bring about long-term control of
urologic cancers.
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